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Fig. 1. The semantics stack in IoT. 

Secure Semantic Interoperability for IoT 
Applications with Linked Data 

George Hatzivasilis, Othonas Soultatos, 
Eftychia Lakka, Sotiris Ioannidis 

Institute of Computer Science 
Foundation for Research and 

Technology – Hellas (FORTH) 
Heraklion, Crete, Greece 

hatzivas@ics.forth.gr, 
soultatos@ics.forth.gr, 
elakka@ics.forth.gr, 
sotiris@ics.forth.gr  

Darko Anicic, Arne Bröring 
Siemens AG 

Corporate Technology Siemens 

Munich, Germeny 
darko.anicic@siemens.com, 
arne.broering@siemens.com 

Mirko Falchetto 
STMicroelectronics S.r.l. 

Agrate Brianza, Italy 
mirko.falchetto@st.com 

Konstantinos Fysarakis, George 
Spanoudakis 

Sphynx Technology Solutions AG 
Zug, Switzerland 

fysarakis@sphynx.ch, 
spanoudakis@sphynx.ch 

Lukasz Ciechomski 
BlueSoft Sp. z.o.o. 
Warsaw, Poland 

lciechomski@bluesoft.net.pl 

Abstract—Interoperability stands for the capacity of a 

system to interact with the units of another entity. Although it 

is quite easy to accomplish this within the products of the same 

brand, it is not facile to provide compatibility for the whole 

spectrum of the Internet-of-Things (IoT) and the Linked Data 

(LD) world. Currently, the different applications and devices 

operate in their own cloud/platform, without supporting 

sufficient interaction with different vendor-products. As it 

concerns the meaning of data, which is the main focus of this 

paper, semantics can settle commonly agreed information 

models and ontologies for the used terms. However, as there 

are several ontologies for describing each distinct ‘Thing’, we 

need Semantic Mediators (SMs) in order to perform common 

data mapping across the various utilized formats (i.e. XML or 

JSON) and ontology alignment (e.g. resolve conflicts). Our goal 

is to enable end-to-end vertical compatibility and horizontal 

cooperation at all levels (field/network/backend). Moreover, 

the implication of security must be taken into consideration as 

the unsafe adoption of semantic technologies exposes the 

linking data and the user’s privacy, issues that are neglected by 

the majority of the semantic-web studies. A motivating 

example of smart sensing is described along with a preliminary 

implementation on real heterogeneous devices. Two different 

IoT platforms are integrating in the case study, detailing the 

main SM features. The proposed setting is secure, scalable, and 

the overall overhead is sufficient for runtime operation, while 

providing significant advances over state-of-the-art solutions. 

Keywords—semantics, linked data, data mapping, ontology 

alignment, interoperability, IoT, JSON-LD, SPARQL-LD 

I. INTRODUCTION 

This paper tackles the semantic interoperability issues 
that arise in the Internet of Things (IoT) domain [1]. 
Semantic interoperability is the designed property where 
various systems can interact with each other and exchange 
data with unambiguous, shared meaning. This enables 
knowledge discovery, machine computable reasoning, and 
federation of different information systems. 

Interoperability is materialized by including information 
regarding the data (metadata) and linking each element to a 
commonly shared vocabulary (e.g. [2], [3]). Thus, the 
meaning of the data is exchanged along the data itself in a 
self-describing information package. The shared vocabulary 
and the associations to an ontology enable machine 
interoperation, logic, and inference. Ontology is the explicit 

specification of a conceptualization and includes a formal 
representation of the properties and relations between the 
entities, concepts and data of a specific application domain. 
In general, technologies from the Semantic Web are adapted 
in order to capture the inherited properties of an IoT 
ecosystem [4], [5]. They are mainly XML schemes, such as 
the RDF, RDFS, and OWL for ontologies, and for services 
the WSDL. These primitives provide common definitions of 
data or services, describe things with the underlying 
properties, and accommodate the semantic annotations, 
discovery of resources, inference of knowledge, and access 
control, in an interoperable and machine-readable fashion. 

The common format and meaning of semantics in a 
universally accepted ontology, as suggested above, would be 
fruitful. Yet, this is not the current status [1]. While various 
systems could employ standardized or popular ontologies, 
eventually they extend them and settle own interfaces and 
semantics (e.g. [4], [5]). Thereby, the direct interaction of 
such systems is infeasible. A smart watch for example, 
which is developed in IOS could not interwork with smart 
bulbs without a relevant proprietary gated application from 
the same brand. Therefore, islands of IoT functionality are 
established, leading towards a vertical ‘Intranet-of-Things’ 
instead of the actual vision of an ‘Internet-of-Things’. To 
presume upon the full potential of the IoT setting, we require 
standards for accomplishing the desired horizontal and 



vertical operation, communication, and programming across 
platforms/devices, independent of their vendor and/or model. 

Nevertheless, the cyber-security concerns must be also 
taken into account throughout the whole semantic resolution 
process. The mainstream network defences alone (i.e. TLS) 
are not adequate in protecting the communication against an 
emerging type of malicious entity, the semantic attacker [6], 
[7]. While the ordinary attacks could exploit the lack or bad 
configuration of cryptography, adversaries in the Semantic 
Web try to manipulate the semantic relations and the RDF 
rules. The goal is to control the inference operation of the 
reasoning components that collect, correlate, and process 
data. The semantic attacks exploit network or Web level 
vulnerabilities. They do not attack the reasoning system itself 
but they try to compromise the input data to influence the 
deduced conclusions. The distributed nature of the IoT and 
the linking data of the social Web exaggerates the problem, 
especially in the case of the follow your nose algorithm [8] 
that is performed by many Linked Data (LD) applications. 

Thus, the deployment of Semantic Mediators (SMs) is 
recommended in this article in order to correlate the required 
information and materialize cross-domain interaction with 
interoperability between systems of different semantics. The 
SMs transform data in the same format and resolve potential 
conflicts between the different thing descriptions. Security 
countermeasures are also deployed, protecting the data both 
in transit and at rest. The main contributions of the proposed 
SMs include: i) Cooperation with legacy, XML, and JSON 
formats, ii) Support of W3C initiatives for IoT and LD (i.e. 
standardized ontologies, iot.schema.org, JSON-LD), iii) 
Direct processing of JSON-LD data by the inference and 
reasoning modules (with SPARQL-LD [9]), iv) Secure 
transmission of data (TLS at all communications) defending 
the system against data in transit attacks, v) Validation of the 
data legitimacy prior their usage (i.e. JWS/JOSE framework 
[10], [11]), protecting against the data in rest semantic 
attacks, vi) Distributed functionality across the edge, 
network, and backend systems, vii) Efficient and scalable 
operation, viii) Integration of two EU funded IoT initiatives: 
the SEMIOTICS project and the FIWARE cluster, and viiii) 
Advancements over state-of-the-art solutions. 

The rest article is structured as: Section 2 refers the 
background theory regarding the semantic interoperability in 
the IoT domain and related works for semantic 
mediators/brokers. Section 3 evinces the security 
perspective. Section 4 describes the proposed SM 
component. Section 5 details the implementation of a 
preliminary version along with the performance evaluation. 
Section 6 discusses the evaluation results and presents a 
comparative study with alternative candidates, while Section 
7 concludes and mentions future extensions. 

II. BACKGROUND THEORY & RELATED WORK 

A. Semantics 

There are several Sematic Web initiatives that try to 
describe and model specific domain ontologies [12]. The 
most notable effort for semantics formation in the IoT field 
are the Semantic Sensor Network (SSN) and Sensor 
Observation Sampling Actuator (SOSA) ontologies by the 
W3C community [2]. Combined together, SOSA/SSN model 
sensors, actuators, samplers as well as their observation, 
actuation, and sampling activities. The ontologies capture the 
sensor and actuator capabilities, usage environment, 

performance, and enabling contextual data discovery. This 
also constitutes the standardized ontologies for the semantic 
sensor networks. The cooperation of SSN and SOSA offers 
different scope and degrees of axiomatization that enable a 
wide range of application scenarios of Web 3.0 [13]. 

The general approach regarding the semantic 
interoperability that is followed by several IoT initiatives, 
like the EU funded projects OpenIoT [4] and INTER-IoT [5], 
is the usage of the SSN/SOSA ontologies as the semantic 
base. The ontologies are then extended with the additional 
required concepts to model the targeted application 
scenarios. Such concepts usually include relevant standards 
and ontologies for specific application areas, like e-health 
[14], and less often extensions at the sensor level (as the 
relevant SSN/SOSA information is quite complete). Other 
similar and popular IoT ontologies include the MyOntoSens 
[15] and the SAREF [16]. 

In the ongoing shift towards the Web 3.0, we move from 
a Web of linked documents into a Web of linked data [3], 
[13]. Except from modelling ontology schemas as mentioned 
before, this also includes methods for publishing structured 
data in a manner that it can be interlinking and accessed by 
semantic queries, like in the LD approach. Just recently, the 
working group Web of Things (WoT) was initiated by the 
W3C in an attempt to circumscribe the fragmentation issues 
in IoT and enable interoperable services and devices, 
therefore decreasing the overall development costs. The 
Thing Description (TD) constitutes a considerable aspect of 
this W3C WoT interplay. TDs describe the interfaces of 
(physical) Things and their metadata in a machine 
interpretable manner. They are built upon the W3C's 
extensive efforts on RDF and JSON- LD, and determine a 
domain agnostic vocabulary for defining any Thing in terms 
of its properties, actions, and events. Here, several semantic 
models can express the semantic meaning of these attributes 
for each particular Thing. The iot.schema.org is such a 
meritorious communal effort to establish a semantic schema 
for the IoT ecosystems. Jointly, W3C WoT and 
iot.schema.org, instate a layer for semantic interoperability 
which renders the software capable in interacting with the 
physical world. This interplay is abstracted in such a manner 
where the development of applications across various IoT 
settings and domains is ease and simplified. 

Then, data can be transmitted in an RDF format and 
stored in triple stores (e.g. Sesame and Virtuoso) [17], [18]. 
Thereafter, tools are used which process semantic queries 
[19]. The standardized SPARQL is the query language for 
the Semantic Web [20]. It acts as a semantic database and 
constitutes the main option for semantic reasoning. Methods 
are also supported to interrogate multiple triple-stores over 
HTTP. SPARQL can process data with XML format and 
exploit the RDF rules in order to answer queries for the 
stored information. An interesting variant is the SPARQL-
LD [9]. This version parses JSON-LD data and can also 
gather linking information directly from the Internet. The 
implementation extends a popular SPARQL processor for 
the Jena Apache server [9] and is quite efficient (an ask 
query on DPedia requires around 300ms on average). 

Fig. 1 illustrates the overall semantics stack of a modern 
IoT setting. Thereafter, this semantic layers are adopted in 
the SEMIOTICS project and we utilize the SMs in order to 
align the semantics of other cooperative platforms, like the 
FIWARE cluster. Also, the SMs embodies the SPARQL-LD 



for the implementation of the semantic reasoning and the 
direct processing of JSON-LD data across the Internet. 

B. Ontology Alignment 

Depending on the completeness and expressiveness of 
the processed ontologies, the aforementioned reasoning tools 
can infer associations among the different semantic domains. 
OWL rules are exploited for this purpose, like the 
owl:sameAs, owl:equivalentClass, and owl:subClassOf. 
They provide the basic ontology alignment functionality 
between the underlying linking information. Thus, data are 
adapted and transformed across signified ontologies. 

However, as Halpin et al. state [21], expressing 
relationships on LD is a much more complex problem than 
just applying the owl:sameAs rule. Currently, there is a 
plethora of distinct datasets that have been developed 
independently. The problem raises when someone tries to 
integrate/correlate these pieces of knowledge together, as 
many of the applied owl:sameAs rules tend to be mutually 
incompatible. Indicative cases of erroneous usage include 
definitions for: i) the same thing but in different context, ii) 
the same thing but in referentially opaque, iii) different 
representations of the same thing, and iv) very similar things 
[21]. Moreover, the expressive capabilities of OWL are 
constrained and are not always sufficient for modeling 
complex interrelations or resolving semantic conflicts [22], 
[23]. Doulaverakis et al. also mention [23] that the 
knowledge base have to be extended with rules in order to 
capture situations that cannot be defined by OWL alone. 

Therefore, semantic brokers are deployed to perform 
ontology alignment and resolve semantic conflicts [22], [23], 
retaining the reliability and Quality of Service (QoS) in the 
IoT setting. The Semantic Information Brokers (SIBs) [22] is 
a typical option for semantic interoperability in pervasive 
computing. The semantics are described by mainstream 
solutions, like RDF/OWL, and distributed SIBs resolve 
semantics in the local smart space scale. Then, Resolve 
Servers interlink the knowledge originated by SIBs and 
permit cross-domain interaction, exploiting the modelling 
capabilities of OWL. SPARQL is utilized for reasoning. 

The Intelligent Information Fusion (IIF) [23] 
recommends a low level mechanism for consolidating 
information from heterogeneous sensory equipment. The 
case study considers a city-wide public surveillance system 
that has to process information from multiple resources (e.g. 
visible spectrum or IR cameras, and acoustic sensors) in real-
time. The semantics of each domain are modelled by the 
mainstream XML/RDF technologies and the reasoning is 
implemented as an SQL-like procedural language in 
SPARQL. Then, the user defines fusion functions describing 
which pieces of information are to be retrieved (e.g. number 
of persons, detection of smoke, etc.) by each platform and 
how to use them. IIF successfully correlates semantics of the 
same format for different domains and overcomes some 
restrictions of the OWL expressiveness. On the other hand, it 
does not resolve semantic conflicts. 

Similarly, the semantically-enabled Plug & Play 
approach for the Sensor Web ([24], [25]) facilitates the 
automatic association of sensors to data hosting Web 
services. A mediation approach is implemented based on an 
ontology that extends SSN and a set of SWRL rules. First, 
the sensor metadata (expressed in standard SensorML) is 
auto-translated into the ontology. Then, the matchmaking is 

performed through subsumption reasoning between those 
advertised sensor metadata and the requirements specified by 
Web services. Finally, for spatial, temporal and unit 
matchmaking, SWRL rules are executed and also employed 
for mediation between convertible mismatches. 

III. THE SECURITY INPMLICATION 

The Semantic Web utilizes the widely-known Uniform 
Resource Identifiers (URIs) as a mean to address and link 
data and their sources. The consumer (user or service) 
discovers the required information in the Web, retrieves the 
data from the related URI, and processes it. However, several 
security aspects have been neglected throughout the overall 
operation [26]. W3C standardized the core semantic 
technologies before the formalization of the Same Origin 
Policy and the TLS, and thus, the Semantic Web had been 
designed without taking into account the security 
implications [26]. Until even today, there are almost no 
academic works on the Semantic Web security [27], [28]. 
Furthermore, there is also considerable confusion regarding 
the underlying security aspects, like the usage of HTTP URIs 
or the misuse of cryptographic solutions (i.e. TLS, 
WebID+TLS.2, etc.). These facts also raise significant 
privacy risks for the personal data that can be exposed and 
linked across the Internet. 

If TLS has not been properly set in the origin, a network 
attacker acting as a man-in-the-middle can manipulate the 
transmitted traffic. The malicious entity can gain the control 
of the exchanged information and perform a series of 
specialized attacks (e.g. Coercive parsing, SOAPAction 
spoofing, Metadata spoofing, attack obfuscation, WS-
Addressing spoofing, attacks on Web Service Compositions 
through BPEL state deviation, signature wrapping with 
namespace injection, etc.) [6], [7]. These exploits could 
potentially change endpoint URLs, message schemas, 
cryptographic parameters, or remove security assertions, and 
even add/delete/change/fake operations. Over and above, the 
attacks can be done quite easily with open-source tools (e.g. 
sslstrip or wireshark), while it is impossible for the consumer 
to discriminate the malicious activity. 

Nevertheless, except from securing the information in 
transit with TLS, we must also protect the data in rest at the 
backend side. This is an even more neglected research issue 
for the Semantic Web specialists and practitioners. As 
Thuraisingham states [28], securing RDF is a much more 
challenging task than in the ordinary HTML/XML settings as 
we also need to retain the security of the semantic level. So 
far the highest majority of researchers and Semantic Web 
users simply consider the protection mechanisms for access 
control and secure transmission [27]. 

Thus, consider the case where the hacker infiltrates a 
vulnerable server that hosts ontologies or schemas, and 
replaces them with malicious ones (in a similar fashion as 
they can change the HTML code of popular sites). The same 
effect could be accomplished through DNS poisoning, where 
the attacker makes the traffic to be routed in a compromised 
server instead to the legitimate one. The result will be 
successful attacks, as in the aforementioned cases of data in 
transit assaults ([6], [7]). Note that some versions of these 
attacks can be performed even if the TLS communication has 
been set correctly. Then, take as an indicative example, an 
application that utilizes linking data form the Web in order to 
determine if a citizen is categorized in a particular class, like 



 

the terrorist group. A semantic attacker who manipulates one 
of the resources that is parsed by the inference engine (either 
in transit or at rest) could alter the terrorist definition. The 
OWL/RDF triples which denote that the crime must be 
political by virtue of a certain government-approved 
definition, are erased. Then, any person who exhibits a less 
important deviating behaviour (e.g. violation of the road 
traffic code, robbery, etc.) would be erroneously categorized 
as a terrorist. If more triples are deleted, any citizen could be 
denoted as a terrorist by this correctly functioning inference 
procedure, due to the utilization of data with poor quality. 

Therefore, as the Semantic Web reasoning is based on 
collecting and integrating trusted data across the Internet, the 
whole information retrieval infrastructure must deploy TLS 
for every involved URI. If triples are originated from Web-
level protocols, the protocols must also utilize TLS and 
retain their security properties. Moreover, in order to protect 
the inference engine that gathers linked data from the Web 
for the data in rest attacks, we need to authenticate the 
legitimacy of the information before proceeding to further 
processing. For these purposes, the IETF standard JSON 
Web Signature (JWS) has been proposed [10]. The 
information that is contained in JSON files is signed and the 
consumer can verify the source’s authenticity along with the 
integrity of the received data. The full framework, called 
JSON Object Signing and Encryption (JOSE) [11], can also 
support encryption for confidentiality. 

For the proposed SMs, except from deploying TLS and 
signing data, we mainly utilize JWS to sign the TDs that are 
processed and validate the trustworthiness of the reported 
transformation rules. As these rules are pieces of code that 
will be executed by the legitimate system for accomplishing 
ontology alignment, they have to be also inspected by the 
system operator prior their integration to the knowledge base. 
Otherwise, the SM could be vulnerable to code injection 
attacks. Nevertheless, this is not considered a significant 
burden for the operator as it is done only once, when a new 
or updated TD is parsed. Then, the runtime interoperation of 
the various components is done automatically. 

IV. SEMANTIC MEDIATORS 

This section details the operation of the semantic 
mediators. The SMs utilize the Yet Another Next Generation 
(YANG) data model in order to map the data in a common 
format (i.e. JSON). For ontology alignment, they retrieve 
transformation rules from the related signed JSON-LD files 
and then perform the rules as regular expressions in Perl. 

A. Data Mapping 

The YANG data language is defined in the RFC 7950. It 
is a current programming trend and facilitates the 
deployment of new applications in various platforms. For 
this purpose, YANG supports the NETCONF and 
RESTCONF interfaces for the deployment of network and 
RESTful services, respectively. The service operations are 
modelled in YANG. Then, the YANG processor parses the 
model and exports the abstract development project in a 
denoted programming language (e.g. JAVA, C/C++, etc.). 
For our motivating example below, we utilize these features 
in order to deploy the smart functionality that collects, 
processes, and transmits the sensed information. More 
specifically, we exploit the RESTCONF and implement 
RESTful web services that run in the field and backend 
systems. RESTCONF is defined in the RFC 8040. 

Thereafter, we additionally exploit YANG to establish a 
common data mapping between the involved operations. The 
interfaces can process messages with semantic information. 
At the design phase, we have described the structure of these 
messages in YANG (e.g. get current temperature value from 
a sensor). Then, at runtime, we can transform XML 
messages into JSON ones and vice versa, according to the 
specific format which is supported by each interface. The 
mapping is accomplished via the IEFT Internet Draft draft-
ietf-netmod-yang-json, which establishes a one-to-one 
mapping between JSON and the subset of XML that can be 
modelled by YANG. The overall functionality is also 
tailored in order to cooperate with legacy formats, as in the 
IoT domain there could be several constrained devices, like 
motes/sensors, that do not process structured data. 

B. Ontology Alignment & Semantic Reasoning 

After we have achieved the common format, the next step 
is to resolve semantic conflicts and perform ontology 
alignment between the interacting domains. Thus, we need 
transformation rules that describe how we can transform 
data that are processed by one application into a compatible 
form which is understandable by another machine. 

For the proposed SM components, the rules are modelled 
as specific JSON tags that are included in the related 
TD/JSON-LD files. Each rule tag contains the identification 
of the two domains (from-to) and a Regular Expression 
(RE). The RE is a valid PERL program that models the 
search pattern (for matching the data to be altered) and the 
transformation formula itself (how the data will be changed). 
For example, the next TD sample transforms the temperature 
value from the Celsius to the Fahrenheit scale. Once parsed 
to the inference engine, the rule takes as input the JSON-LD 
file from a FIWARE’s set_temperature service, searches for 
the temperature value, and changes it to the other scale. The 
expressiveness of this RE type is even more advance than 
just performing a single mathematic formula. REs can 
perform complex transformations and successfully resolve 
conflicts that occur by the incorrect OWL correlations [21]. 

V. IMPLEMENTATION 

A. Motivating Example – Smart Sensing 

As a motivating example, we consider a smart sensing 
scenario, where a smart building deploys several sensing 
equipment in order to support pervasive and ubiquitous 
functionality. Energy management is such a popular service. 



 

Fig. 2. The smart sensing interoperability scenario. 

Horizontal operation in the field system is mandatory as well 
as vertical cooperation with the backend. The Customer 
Energy Manager (CEM) is a logical function for optimizing 
energy consumption and can be deployed either in the home 
gateway and/or in the cloud. The interoperability of the 
underlying IoT devices and the CEM service must be 
guaranteed regardless their brand or manufacturer. The user 
should be able to buy and install any smart device while 
retaining the full functionality of the integrated system. 

As an indicative scenario, we consider the case where the 
user installs temperature sensors in the rooms. Three types of 
sensory devices are modelled: the first one is bought from a 
European manufacturer – measures the temperature in the 
Celsius scale (oC) and transmits data in an XML format; the 
second one is bought from USA – measures the temperature 
in the Fahrenheit scale (oF) and transmits JSON messages; 
and the third sensor is compatible with the FIWARE’s 
semantics – measures the temperature in oC and transmits 
JSON messages. Then, we model two reasoning processes 
where the system collects data and takes runtime decisions. 

Edge reasoning: The CEM functionality that runs in the 
local gateway must retain a specified temperature value in 
the building. At first, the SM component in the gateway 
maps all gathered data in a common format and aligns all 
semantics in the SEMIOTICS schema (iot.schema.org). 
Thus, the temperature information is stored in JSON and in 
the Celsius scale. If the temperature in a room goes beyond a 
threshold, the relevant fan is adjusted accordingly. 

Backend reasoning: If one device is damaged or 
malfunctioning, the deductive capabilities of JSON-LD are 
utilized to search for a technician who can fix it. Thus, the 
equipment descriptions and the technicians’ expertise are 
collected via Internet. The information is stored in the CEM 
cloud service (i.e. SPARQL-LD) and the SM’s ontology 
alignment can be performed if it is required. 

The SMs are deployed in the gateway and the cloud to 
ensure common data mappings and ontology alignment. 
They also include a local repository for maintaining TDs and 
sensed data. Then, semantic reasoning can be performed, i.e. 
with SPARQL/SPARQL-LD. Fig. 2 depicts this scenario. 
From bottom-up, we consider 3 main data flows that 
implement the abovementioned functionality. The first data 
flow includes the local communication of the interconnected 
devices at the edge system. The devices can interact directly 
(if they are compatible) or indirectly through a gateway. If it 
is required, the gateway also performs the SM services, 
applying common data mappings and semantics. In the 
second setting, the devices or a gateway application interplay 
with the backend. Here again, the gateway can execute the 
SM services for semantic interoperability. In cases where the 
communication between the field and the backend (flow 2) 
must be encrypted, the SM functionality is performed in the 
cloud by the end-point that decrypts and processes the data. 

B. Performance Evaluation & Comparison 

A preliminary version of the proposed setting is 
implemented. We deploy two different embedded platforms 
that emulate the smart sensing equipment, consisting of 
Zolertia Z1 motes and BeagleBone nodes. Two Z1 transmit 
XML/oC messages with 6LoWPAN, a BeagleBone sends 
JSON/oF data over Ethernet, while another BeagleBone 
exchanges JSON/oC information via USB-WiFi. A laptop 
acts as the local gateway that gathers data from the edge 

system. It also runs the SM service and emulates a fan device 
that exchanges legacy-formatted/oC messages. A similar 
virtual machine runs the backend SM in the cloud platform 
Proxmox along with end-user services.  

We measure the performance of the SM component in 
the laptop (the cloud version performed similarly). For the 
initialization process, 100 TDs are parsed by the mediator 
(for the sake of this testbed, the operators consent is gained 
automatically, without the manual inspection of the 
transformation rules). Then, the devices sent totally 100 
sensed messages, requiring common data mapping and 
ontology alignment. Table I details the average evaluation 
results. As is evidence, the overall overhead of the SM is 
adequate for real-time applications which will have to 
process many messages simultaneously. 

TABLE I.  PERFORMANCE EVALUATION FOR SM 

Operation CPU (ms) RAM (KB) 

Security 

Sign JSON-LD (RSA-2048) 0.3 7.0 

TLS 10.7 11.5 

Verify signature (offline) 0.2 0.5 

Initialization 

Signature verification of TD 0.2 0.5 

Processing of TD and extraction of 
transformation rules 

0.1 0,2 

Intermediate data mapping models (Yang) 800 32,658 

Total resource consumption 800.3 33.358 

Runtime Processing 

TLS+Signature verification 10.9 12 

Data mapping (Yang) 800 32.658 



Operation CPU (ms) RAM (KB) 

Ontology alignment (Perl execution) 4.7 452 

Maximum resource consumption 815.6 33.122 

 

Table II summarizes the main features that are provided 
by the proposed SM and the related SIB [22] and IIF [23]. In 
general, SIB/IIF are suitable for RDF/OWL ecosystems 
while SM also exploits the capabilities of the modern LD 
approach. The expressive power of the SM/REs is far more 
advance than a specific notification schema that must be 
supported by all entities, as proposed by the related works. 
Thus, SM resolves a high variety of semantic conflicts, 
including the four main cases of erroneous OWL usage [21], 
and offers a general ontology alignment approach. Moreover, 
security and trust are considered, with the validity of TDs 
and semantic data being verified before further processing. 

TABLE II.  COMPARISON 

Feature SM SIB [22] IIF [23] 

Architecture Distributed Distributed Distributed 

Data formats 
Legacy, XML, 
JSON 

XML XML 

Data mapping JSON-LD RDF/OWL RDF/OWL 

Ontology 

alignment 

Regular 
Expression 

Own physical 
objects 
notifications 

OWL 
extensions 

Reasoning engine SPARQL-LD SPARQL SPARQL 

Semantic Security 
TLS and 
JOSE/JWS 

No No 

VI. CONCLUSION 

This article presents the landscape for semantic 
interoperability in the IoT. To do so, the state-of-the-art 
approaches are reviewed, including technologies for 
semantics, data mappings, ontologies alignment, semantic 
reasoning, etc. The main outcome is the proposal of the 
Semantic Mediator (SM) component which can be deployed 
across the various IoT layers (field, network, backend) and 
provide the required common representation and meaning of 
data. The platform integration of 2 EU funded IoT initiatives 
(SEMIOTICS and FIWARE) is described in a smart 
temperature sensing scenario. This includes the appliance of 
the various interoperability methods from the field to the 
backend. The overall deployment is scalable and sufficient 
for real-time operation. In comparison with related settings, 
the SM retains security and exhibits more advanced data 
mapping and ontology alignment capabilities. As future 
extension, the SMs’ can be applied as privacy mediators, 
where the transformation rules anonymize or generalize the 
exchanged data and enhance the user’s privateness. 
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